LEETCODE ALGORITHM:69. Sqrt(x)

题目

Implement int sqrt(int x).

Compute and return the square root of x, where x is guaranteed to be a non-negative integer.

Since the return type is an integer, the decimal digits are truncated and only the integer part of the result is returned.

Example 1:

1
2
Input: 4
Output: 2

Example 2:

1
2
3
4
Input: 8
Output: 2
Explanation: The square root of 8 is 2.82842..., and since
the decimal part is truncated, 2 is returned.

题解

二分法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
class Solution {
public:
int mySqrt(int x) {
//if(x==0) return 0;
int left=0,right=x,ans=-1;
while(left<=right)
{
int mid=(left+right)/2;
if((long long)mid*mid>x) right=mid-1;
else if(mid*mid<x)
{
ans=mid;
left=mid+1;
}
else return mid;
}
return ans;
}
};

牛顿迭代法

相当于求\(x^2-C=0\)的零点,从\(x=C\)开始找改点切线与x轴的交点,作为下一次起点

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Solution {
public:
int mySqrt(int x) {
if (x == 0) {
return 0;
}

double C = x, x0 = x;
while (true) {
double xi = 0.5 * (x0 + C / x0);
if (fabs(x0 - xi) < 1e-7) {
break;
}
x0 = xi;
}
return int(x0);
}
};